1
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\lim _\limits{x \rightarrow 1} \frac{x^2-a x+b}{x-1}=7$, then $a+b$ is equal to

A
$-$1
B
1
C
$-$11
D
11
2
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A ladder 5 m long rests against a vertical wall. If its top slides downwards at the rate of $10 \mathrm{~cm} / \mathrm{sec}$., then the foot of the ladder is sliding at the rate of _________ $\mathrm{m} / \mathrm{sec}$., when it is 4 m away from the wall.

A
0.75
B
7.5
C
0.0075
D
0.075
3
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\frac{x}{2-x}, \mathrm{~g}(x)=\frac{x+1}{x+2}$, then (gogof) $(x)=$

A
$\frac{6+x}{10-2 x}$
B
$\frac{6-x}{10+2 x}$
C
$\frac{6+x}{10+2 x}$
D
$\frac{6-x}{10-2 x}$
4
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\cos ^{-1} x, \mathrm{~g}(x)=\mathrm{e}^x$ and $\mathrm{h}(x)=\mathrm{g}(\mathrm{f}(x))$, then $\frac{\mathrm{h}^{\prime}(x)}{\mathrm{h}(x)}=$

A
$\frac{-1}{\sqrt{1-x^2}}$
B
$\frac{-(\mathrm{e})^{\left(\cos ^{-1} x\right)}}{\sqrt{1-x^2}}$
C
$\frac{-1}{\sqrt{1-x^2}} \mathrm{e}^x$
D
$-\sqrt{1-x^2}$
MHT CET Papers
EXAM MAP