1
GATE EE 2017 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The approximate transfer characteristic for the circuit shown below with an ideal operational amplifier and diode will be GATE EE 2017 Set 1 Analog Electronics - Operational Amplifier Question 17 English
A
GATE EE 2017 Set 1 Analog Electronics - Operational Amplifier Question 17 English Option 1
B
GATE EE 2017 Set 1 Analog Electronics - Operational Amplifier Question 17 English Option 2
C
GATE EE 2017 Set 1 Analog Electronics - Operational Amplifier Question 17 English Option 3
D
GATE EE 2017 Set 1 Analog Electronics - Operational Amplifier Question 17 English Option 4
2
GATE EE 2017 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The transfer function of the system $$Y\left( s \right)/U\left( s \right)$$ , whose state-space equations are given below is:
$$\eqalign{ & \left[ {\matrix{ {\mathop {{x_1}}\limits^ \bullet \left( t \right)} \cr {\mathop {{x_2}}\limits^ \bullet \left( t \right)} \cr } } \right] = \left[ {\matrix{ 1 & 2 \cr 2 & 0 \cr } } \right]\left[ {\matrix{ {{x_1}\left( t \right)} \cr {{x_2}\left( t \right)} \cr } } \right] + \left[ {\matrix{ 1 \cr 2 \cr } } \right]u\left( t \right) \cr & y\left( t \right) = \left[ {\matrix{ 1 & 0 \cr } } \right]\left[ {\matrix{ {{x_1}\left( t \right)} \cr {{x_2}\left( t \right)} \cr } } \right] \cr} $$
A
$${{\left( {s + 2} \right)} \over {\left( {{s^2} - 2s - 2} \right)}}$$
B
$${{\left( {s + 2} \right)} \over {\left( {{s^2} + s - 4} \right)}}$$
C
$${{\left( {s - 4} \right)} \over {\left( {{s^2} + s - 4} \right)}}$$
D
$${{\left( {s + 4} \right)} \over {\left( {{s^2} - s - 4} \right)}}$$
3
GATE EE 2017 Set 1
Numerical
+2
-0
For a system having transfer function $$G\left( s \right) = {{ - s + 1} \over {s + 1}},$$ a unit step input is applied at time $$t=0.$$ The value of the response of the system at $$t=1.5$$ sec (round off to three decimal places) is __________.
Your input ____
4
GATE EE 2017 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Let a causal $$LTI$$ system be characterized by the following differential equation, with initial rest condition
$${{{d^2}y} \over {d{t^2}}} + 7{{dy} \over {dt}} + 10y\left( t \right) = 4x\left( t \right) + 5{{dx\left( t \right)} \over {dt}}\,\,$$

Where, $$x(t)$$ and $$y(t)$$ are the input and output respectively. The impulse response of the system is ($$u(t)$$ is the unit step function)

A
$$2{e^{ - 2t}}u\left( t \right) - 7{e^{ - 5t}}u\left( t \right)$$
B
$$ - 2{e^{ - 2t}}u\left( t \right) + 7{e^{ - 5t}}u\left( t \right)$$
C
$$7{e^{ - 2t}}u\left( t \right) - 2{e^{ - 5t}}u\left( t \right)$$
D
$$ - 7{e^{ - 2t}}u\left( t \right) + 2{e^{ - 5t}}u\left( t \right)$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12