1
GATE EE 2015 Set 2
+2
-0.6
For linear time invariant systems, that are Bounded Input Bounded stable, which one of the following statement is TRUE?
A
The impulse response will be integral, but may not be absolutely integrable.
B
The unit impulse response will have finite support.
C
The unit step response will be absolutely integrable.
D
The unit step response will be bounded.
2
GATE EE 2015 Set 2
+2
-0.6
Consider a signal defined by $$x\left(t\right)=\left\{\begin{array}{l}e^{j10t}\;\;\;for\;\left|t\right|\leq1\\0\;\;\;\;\;\;\;for\;\;\left|t\right|>1\end{array}\right.$$\$ Its Fourier Transform is
A
$$\frac{2\sin\left(\omega-10\right)}{\omega-10}$$
B
$$2e^{j10}\frac{\sin\left(\omega-10\right)}{\omega-10}$$
C
$$\frac{2\sin\left(\omega\right)}{\omega-10}$$
D
$$e^{j10\omega\frac{2\sin\omega}\omega}$$
3
GATE EE 2015 Set 2
+1
-0.3
The Laplace transform of f(t)=$$2\sqrt{t/\mathrm\pi}$$ is $$s^{-3/2}$$. The Laplace transform of g(t)=$$\sqrt{1/\mathrm{πt}}$$ is
A
$$\left(3s^{-5/2}\right)/2$$
B
$$s^{-1/2}$$
C
$$s^{1/2}$$
D
$$s^{3/2}$$
4
GATE EE 2015 Set 2
+1
-0.3
The z-Transform of a sequence x[n] is given as X(z) = 2z+4−4/z+3/z2. If y[n] is the first difference of x[n], then Y(Z) is given by
A
$$2z+2-\frac8z+\frac7{z^2}-\frac3{z^3}$$
B
$$-2z+2-\frac6z+\frac1{z^2}-\frac3{z^3}$$
C
$$-2z-2+\frac8z-\frac7{z^2}+\frac3{z^3}$$
D
$$4z-2-\frac8z-\frac1{z^2}+\frac3{z^3}$$
GATE EE Papers
2023
2022
2021
2020
2019
2018
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
EXAM MAP
Medical
NEET
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12