1
GATE EE 2006
MCQ (Single Correct Answer)
+2
-0.6
$$y\left[ n \right]$$ denotes the output and $$x\left[ n \right]$$ denotes the input of a discrete-time system given by the difference equation $$y\left[ n \right] - 0.8y\left[ {n - 1} \right] = x\left[ n \right] + 1.25\,x\left[ {n + 1} \right].$$ Its right-sided impulse response is
A
causal
B
unbounded
C
periodic
D
non-negative
2
GATE EE 2006
MCQ (Single Correct Answer)
+1
-0.3
$$x(t)$$ is a real valued function of a real variable with period $$T.$$ Its trigonometric. Fourier Series expansion contains no terms of frequency
$$\omega = 2\pi \left( {2k} \right)/T;\,\,k = 1,2,........$$ Also, no sine terms are present. Then $$x(t)$$ satisfies the equation
A
$$x\left( t \right) = - x\left( {t - T} \right)$$
B
$$x\left( t \right) = x\left( {T - t} \right) = - x\left( { - t} \right)$$
C
$$x\left( t \right) = x\left( {T - t} \right) = - x\left( {t - T/2} \right)$$
D
$$x\left( t \right) = x\left( {t - T} \right) = - x\left( {t - T/2} \right)$$
3
GATE EE 2006
MCQ (Single Correct Answer)
+2
-0.6
$$x\left[ n \right] = 0;\,n < - 1,\,n > 0,\,x\left[ { - 1} \right] = - 1,\,x\left[ 0 \right]$$
$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 2$$ is the input and
$$y\left[ n \right] = 0;\,n < - 1,\,n > 2,\,y\left[ { - 1} \right] = - 1,\, = y\left[ 1 \right],\,y\left[ 0 \right] = 3,\,y\left[ 2 \right]$$
$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, =- 2$$ is the output of a discrete-time $$LTI$$ system. The system impulse response $$h\left[ n \right]$$ will be
A
$$\eqalign{ & h\left[ n \right] = 0;\,\,n < 0,\,\,n > 2, \cr & h\left[ 0 \right] = 1,\,h\left[ 1 \right] = h\left[ 2 \right] = - 1 \cr} $$
B
$$\eqalign{ & h\left[ n \right] = 0;\,\,n < - 1,\,\,n > 1, \cr & h\left[ { - 1} \right] = 1,\,h\left[ 0 \right] = h\left[ 1 \right] = 2 \cr} $$
C
$$\eqalign{ & h\left[ n \right] = 0;\,\,n < 0,\,\,n \ge 3,\,h\left[ 0 \right] = - 1, \cr & h\left[ 1 \right] = 2,\,h\left[ 2 \right] = 1 \cr} $$
D
$$\eqalign{ & h\left[ n \right] = 0;\,\,n < - 2,\,\,n > 1,\, \cr & h\left[ { - 2} \right] = h\left[ 1 \right] = - 2,\,h\left[ { - 1} \right] = - h\left[ 0 \right] = 3 \cr} $$
4
GATE EE 2006
MCQ (Single Correct Answer)
+2
-0.6
A continuous-time system is described by $$y\left( t \right) = {e^{ - |x\left( t \right)|}},$$ where $$y(t)$$ is the output and $$x(t)$$ is the input. $$y(t)$$ is bounded
A
only when $$x(t)$$ is bounded
B
only when $$x(t)$$ is non-negative
C
only for $$t \ge 0$$ if $$x(t)$$ is bounded for $$t \ge 0$$
D
even when $$x(t)$$ is not bounded
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12