If $$\overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overline{\mathrm{b}}=4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$$ and $$\overline{\mathrm{c}}=\hat{\mathrm{i}}+\alpha \hat{\mathrm{j}}+\beta \hat{\mathrm{k}}$$ are linearly dependent vectors and $$|\bar{c}|=\sqrt{3}$$, then the values of $$\alpha$$ and $$\beta$$ are respectively.
At present a firm is manufacturing 1000 items. It is estimated that the rate of change of production $$\mathrm{P}$$ w.r.t. additional number of worker $$x$$ is given by $$\frac{\mathrm{dp}}{\mathrm{d} x}=100-12 \sqrt{x}$$. If the firm employees 9 more workers, then the new level of production of items is
The maximum value of $$z=3 x+5 y$$ subject to the constraints $$3 x+2 y \leq 18, x \leq 4, y \leq 6, x, y \geq 0$$, is
If $$\mathrm{I}=\int \sin (\log (x)) \mathrm{d} x$$, then $$\mathrm{I}$$ is given by