1
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\mathrm{f}(x)=\frac{3 x+4}{5 x-7}$$ and $$\mathrm{g}(x)=\frac{7 x+4}{5 x-3}$$, then $$\mathrm{f}(\mathrm{g}(x))=$$

A
$$\frac{x^3+1}{x^2+2}$$
B
$$41 x$$
C
$$\mathrm{g}(\mathrm{f}(x))$$
D
$$\frac{5 x-7}{41}$$
2
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the function $$f$$ is given by $$f(x)=x^3-3(a-2) x^2+3 a x+7$$, for some $$\mathrm{a} \in \mathbb{R}$$, is increasing in $$(0,1]$$ and decreasing in $$[1,5)$$, then a root of the equation $$\frac{\mathrm{f}(x)-14}{(x-1)^2}=0(x \neq 1)$$ is

A
$$-$$7
B
6
C
7
D
5
3
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The unit vector perpendicular to each of the vectors $$\bar{a}+\bar{b}$$ and $$\bar{a}-\bar{b}$$, where $$\bar{a}=\hat{i}+\hat{j}+\hat{k}$$ and $$\overline{\mathrm{b}}=3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}$$ is

A
$$\frac{-14 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+10 \hat{\mathrm{k}}}{\sqrt{312}}$$
B
$$\frac{14 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+10 \hat{\mathrm{k}}}{\sqrt{312}}$$
C
$$\frac{14 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+10 \hat{\mathrm{k}}}{\sqrt{312}}$$
D
$$\frac{-14 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+10 \hat{\mathrm{k}}}{\sqrt{312}}$$
4
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The logical statement $$(\sim(\sim \mathrm{p} \vee \mathrm{q}) \vee(\mathrm{p} \wedge \mathrm{r})) \wedge(\sim \mathrm{q} \wedge \mathrm{r})$$ is equivalent to

A
$$\sim p \vee r$$
B
$$(p \wedge \sim q) \vee r$$
C
$$(\mathrm{p} \wedge \mathrm{r}) \wedge \sim \mathrm{q}$$
D
$$(\sim p \wedge \sim q) \wedge r$$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12