The magnetic flux through a circuit of resistance '$$R$$' changes by an amount $$\Delta \phi$$ in the time $$\Delta t$$. The total quantity of electric charge '$$Q$$' which passes during this time through any point of the circuit is
A beam of light of wavelength $$600 \mathrm{~nm}$$ from a distant source falls on a single slit $$1 \mathrm{~mm}$$ wide and the resulting diffraction pattern is observed on a screen $$2 \mathrm{~m}$$ away. The distance between the first dark fringe on either side of the central bright fringe is
An electron of mass '$$\mathrm{m}$$' and charge '$$\mathrm{q}$$' is accelerated from rest in a uniform electric field of strength '$$E$$'. The velocity acquired by the electron, when it travels a distance '$$\mathrm{L}$$', is
Two bodies have their moments of inertia I and 2I respectively about their axis of rotation. If their kinetic energies of rotation are equal, their angular momenta will be in the ratio