1
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The solution of $$\frac{\mathrm{d} x}{\mathrm{~d} y}+\frac{x}{y}=x^2$$ is

A
$$\frac{1}{y}=\mathrm{c} x-x \log x$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$\frac{1}{x}=\mathrm{c} y-y \log y$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$\frac{1}{x}=\mathrm{c} x-x \log y$$, where $$\mathrm{c}$$ is a constant of integration.
D
$$\frac{1}{y}=\mathrm{c} x-y \log x$$, where $$\mathrm{c}$$ is a constant of integration.
2
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\int \frac{\cos 8 x+1}{\cot 2 x-\tan 2 x} \mathrm{~d} x=\mathrm{A} \cos 8 x+\mathrm{c}$$, where $$\mathrm{c}$$ is an arbitrary constant, then the value of $$\mathrm{A}$$ is

A
$$\frac{1}{16}$$
B
$$\frac{1}{8}$$
C
$$\frac{-1}{8}$$
D
$$\frac{-1}{16}$$
3
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The set of all points, where the derivative of the functions $$\mathrm{f}(x)=\frac{x}{1+|x|}$$ exists, is

A
$$(-\infty, \infty)$$
B
$$[0, \infty)$$
C
$$(-\infty, 0) \cup(0, \infty)$$
D
$$(0, \infty)$$
4
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

In triangle $$\mathrm{ABC}$$ with usual notations $$\mathrm{b}=\sqrt{3}, \mathrm{c}=1, \mathrm{~m} \angle \mathrm{A}=30^{\circ}$$, then the largest angle of the triangle is

A
$$135^{\circ}$$
B
$$90^{\circ}$$
C
$$60^{\circ}$$
D
$$120^{\circ}$$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12