1
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The solution of $$\frac{\mathrm{d} x}{\mathrm{~d} y}+\frac{x}{y}=x^2$$ is

A
$$\frac{1}{y}=\mathrm{c} x-x \log x$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$\frac{1}{x}=\mathrm{c} y-y \log y$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$\frac{1}{x}=\mathrm{c} x-x \log y$$, where $$\mathrm{c}$$ is a constant of integration.
D
$$\frac{1}{y}=\mathrm{c} x-y \log x$$, where $$\mathrm{c}$$ is a constant of integration.
2
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\int \frac{\cos 8 x+1}{\cot 2 x-\tan 2 x} \mathrm{~d} x=\mathrm{A} \cos 8 x+\mathrm{c}$$, where $$\mathrm{c}$$ is an arbitrary constant, then the value of $$\mathrm{A}$$ is

A
$$\frac{1}{16}$$
B
$$\frac{1}{8}$$
C
$$\frac{-1}{8}$$
D
$$\frac{-1}{16}$$
3
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The set of all points, where the derivative of the functions $$\mathrm{f}(x)=\frac{x}{1+|x|}$$ exists, is

A
$$(-\infty, \infty)$$
B
$$[0, \infty)$$
C
$$(-\infty, 0) \cup(0, \infty)$$
D
$$(0, \infty)$$
4
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

In triangle $$\mathrm{ABC}$$ with usual notations $$\mathrm{b}=\sqrt{3}, \mathrm{c}=1, \mathrm{~m} \angle \mathrm{A}=30^{\circ}$$, then the largest angle of the triangle is

A
$$135^{\circ}$$
B
$$90^{\circ}$$
C
$$60^{\circ}$$
D
$$120^{\circ}$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12