1
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overline{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$$ and $$\overline{\mathrm{c}}=3 \hat{\mathrm{i}}-\hat{\mathrm{j}}$$ are such that $$\bar{a}+\lambda \bar{b}$$ is perpendicular to $$\bar{c}$$, then the value of $$\lambda$$ is

A
$$\frac{-1}{5}$$
B
3
C
$$\frac{3}{5}$$
D
$$\frac{-3}{5}$$
2
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If a circle passes through points $$(4,0)$$ and $$(0,2)$$ and its centre lies on $$\mathrm{Y}$$-axis. If the radius of the circle is $$r$$, then the value of $$r^2-r+1$$ is

A
25
B
21
C
20
D
10
3
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\mathrm{A}=\left[\begin{array}{ll}\mathrm{i} & 1 \\ 1 & 0\end{array}\right]$$ where $$\mathrm{i}=\sqrt{-1}$$ and $$\mathrm{B}=\mathrm{A}^{2029}$$, then $$\mathrm{B}^{-1}=$$

A
$$-\mathrm{A}$$
B
$$\operatorname{adj} \mathrm{A}$$
C
$$\mathrm{-I}$$
D
$$-\operatorname{adj} \mathrm{A}$$
4
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The solution of the differential equation $$\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{y}{x}=\sin x$$ is

A
$$x y+\cos x=\sin x+\mathrm{c}$$, where c is a constant of integration.
B
$$x(y+\cos x)=\sin x+\mathrm{c}$$, where c is a constant of integration.
C
$$y(x+\cos x)=\sin x+c$$, where c is a constant of integration.
D
$$x y+\sin x=\cos x+\mathrm{c}$$, where c is a constant of integration.
MHT CET Papers
EXAM MAP