1
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The unit vector perpendicular to each of the vectors $$\bar{a}+\bar{b}$$ and $$\bar{a}-\bar{b}$$, where $$\bar{a}=\hat{i}+\hat{j}+\hat{k}$$ and $$\overline{\mathrm{b}}=3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}$$ is

A
$$\frac{-14 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+10 \hat{\mathrm{k}}}{\sqrt{312}}$$
B
$$\frac{14 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+10 \hat{\mathrm{k}}}{\sqrt{312}}$$
C
$$\frac{14 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+10 \hat{\mathrm{k}}}{\sqrt{312}}$$
D
$$\frac{-14 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+10 \hat{\mathrm{k}}}{\sqrt{312}}$$
2
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The logical statement $$(\sim(\sim \mathrm{p} \vee \mathrm{q}) \vee(\mathrm{p} \wedge \mathrm{r})) \wedge(\sim \mathrm{q} \wedge \mathrm{r})$$ is equivalent to

A
$$\sim p \vee r$$
B
$$(p \wedge \sim q) \vee r$$
C
$$(\mathrm{p} \wedge \mathrm{r}) \wedge \sim \mathrm{q}$$
D
$$(\sim p \wedge \sim q) \wedge r$$
3
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $$\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}, \bar{b}=\hat{i}+\hat{j}$$ and $$\bar{c}$$ be a vector such that $$|\bar{c}-\bar{a}|=4,|(\bar{a} \times \bar{b}) \times \bar{c}|=3$$ and the angle between $$\overline{\mathrm{c}}$$ and $$\overline{\mathrm{a}} \times \overline{\mathrm{b}}$$ is $$\frac{\pi}{6}$$, then $$\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}$$ is equal to

A
$$-3$$
B
$$\frac{3}{2}$$
C
3
D
$$\frac{-3}{2}$$
4
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$a$$ and $$b$$ are positive number such that $$a>b$$, then the minimum value of $$a \sec \theta-b \tan \theta\left(0 < \theta < \frac{\pi}{2}\right)$$ is

A
$$\frac{1}{\sqrt{a^2-b^2}}$$
B
$$\frac{1}{\sqrt{a^2+b^2}}$$
C
$$\sqrt{a^2+b^2}$$
D
$$\sqrt{a^2-b^2}$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12