1
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\text { For all real } x \text {, the minimum value of } \frac{1-x+x^2}{1+x+x^2} \text { is }$$

A
0
B
1
C
$$\frac{1}{3}$$
D
3
2
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\bar{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \bar{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}, \bar{c}=2 \hat{i}-\hat{j}+4 \hat{k}$$, then a vector $$\overline{\mathrm{d}}$$ which is parallel to vector $$\overline{\mathrm{a}} \times \overline{\mathrm{b}}$$ and which $$\overline{\mathrm{c}} \cdot \overline{\mathrm{d}}=15$$, is

A
$$30 \hat{i}-\hat{j}-14 \hat{k}$$
B
$$90 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}-42 \hat{\mathrm{k}}$$
C
$$90 \hat{\mathrm{i}}+\hat{\mathrm{j}}-7 \hat{\mathrm{k}}$$
D
$$30 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+7 \hat{\mathrm{k}}$$
3
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the vertices of a triangle are $$(-2,3),(6,-1)$$ and $$(4,3)$$, then the co-ordinates of the circumcentre of the triangle are

A
$$(1,1)$$
B
$$(-1,-1)$$
C
$$(-1,1)$$
D
$$(1,-1)$$
4
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The solution of $$\frac{\mathrm{d} x}{\mathrm{~d} y}+\frac{x}{y}=x^2$$ is

A
$$\frac{1}{y}=\mathrm{c} x-x \log x$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$\frac{1}{x}=\mathrm{c} y-y \log y$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$\frac{1}{x}=\mathrm{c} x-x \log y$$, where $$\mathrm{c}$$ is a constant of integration.
D
$$\frac{1}{y}=\mathrm{c} x-y \log x$$, where $$\mathrm{c}$$ is a constant of integration.
MHT CET Papers
EXAM MAP