1
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If a circle passes through points $$(4,0)$$ and $$(0,2)$$ and its centre lies on $$\mathrm{Y}$$-axis. If the radius of the circle is $$r$$, then the value of $$r^2-r+1$$ is

A
25
B
21
C
20
D
10
2
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\mathrm{A}=\left[\begin{array}{ll}\mathrm{i} & 1 \\ 1 & 0\end{array}\right]$$ where $$\mathrm{i}=\sqrt{-1}$$ and $$\mathrm{B}=\mathrm{A}^{2029}$$, then $$\mathrm{B}^{-1}=$$

A
$$-\mathrm{A}$$
B
$$\operatorname{adj} \mathrm{A}$$
C
$$\mathrm{-I}$$
D
$$-\operatorname{adj} \mathrm{A}$$
3
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The solution of the differential equation $$\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{y}{x}=\sin x$$ is

A
$$x y+\cos x=\sin x+\mathrm{c}$$, where c is a constant of integration.
B
$$x(y+\cos x)=\sin x+\mathrm{c}$$, where c is a constant of integration.
C
$$y(x+\cos x)=\sin x+c$$, where c is a constant of integration.
D
$$x y+\sin x=\cos x+\mathrm{c}$$, where c is a constant of integration.
4
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $$f:[-1,2] \rightarrow[0, \infty)$$ be a continuous function such that $$\mathrm{f}(x)=\mathrm{f}(1-x), \forall x \in[-1,2]$$

Let $$\mathrm{R}_1=\int_{-1}^2 x \mathrm{f}(x) \mathrm{d} x$$ and $$\mathrm{R}_2$$ be the area of the region bounded by $$y=\mathrm{f}(x), x=-1, x=2$$ and the $$\mathrm{X}$$-axis, then $$\mathrm{R}_2$$ is

A
$$\frac{1}{2} R_1$$
B
$$2 R_1$$
C
$$3 R_1$$
D
$$\frac{1}{3} R_1$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12