The joint equation of the lines pair of lines passing through the point $$(3,-2)$$ and perpendicular to the lines $$5 x^2+2 x y-3 y^2=0$$ is
If the line $$\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-2}{4}$$ meets the plane $$x+2 y+3 z=15$$ at the point $$P$$, then the distance of $$\mathrm{P}$$ from the origin is
If $$\mathrm{A}$$ and $$\mathrm{B}$$ are two events such that $$\mathrm{P}(\mathrm{A})=\frac{1}{3}, \mathrm{P}(\mathrm{B})=\frac{1}{5}, \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{1}{3}$$, then the value of $$\mathrm{P}\left(\mathrm{A}^{\prime} / \mathrm{B}^{\prime}\right)+\mathrm{P}\left(\mathrm{B}^{\prime} / \mathrm{A}^{\prime}\right)$$ is
If the general solution of the equation $$\frac{\tan 3 x-1}{\tan 3 x+1}=\sqrt{3}$$ is $$x=\frac{\mathrm{n} \pi}{\mathrm{p}}+\frac{7 \pi}{\mathrm{q}}, \mathrm{n}, \mathrm{p}, \mathrm{q}, \in \mathrm{Z}$$, then $$\frac{p}{q}$$ is