The a.c. source is connected to series LCR circuit. If voltage across $$R$$ is $$40 \mathrm{~V}$$, that across $$\mathrm{L}$$ is $$80 \mathrm{~V}$$ and that across $$\mathrm{C}$$ is $$40 \mathrm{~V}$$, then the e.m.f. '$$e$$' of a.c. source is
In the study of transistor as an amplifier if $$\alpha=\frac{I_C}{I_E}=0.98$$ and $$\beta=\frac{I_C}{I_B}=49$$, where $$I_C, I_B$$ and $$\mathrm{I}_{\mathrm{E}}$$ are collector, base and emitter current respectively then $$\left(\frac{1}{\alpha}-\frac{1}{\beta}\right)$$ is equal to
A liquid drop of radius '$$R$$' is broken into '$$n$$' identical small droplets. The work done is [T = surface tension of the liquid]
For a gas, $$\frac{\mathrm{R}}{\mathrm{C}_{\mathrm{v}}}=0 \cdot 4$$, where $$\mathrm{R}$$ is universal gas constant and $$\mathrm{C}_{\mathrm{v}}$$ is molar specific heat at constant volume. The gas is made up of molecules which are