1
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The logical statement $$(\sim(\sim \mathrm{p} \vee \mathrm{q}) \vee(\mathrm{p} \wedge \mathrm{r})) \wedge(\sim \mathrm{q} \wedge \mathrm{r})$$ is equivalent to

A
$$\sim p \vee r$$
B
$$(p \wedge \sim q) \vee r$$
C
$$(\mathrm{p} \wedge \mathrm{r}) \wedge \sim \mathrm{q}$$
D
$$(\sim p \wedge \sim q) \wedge r$$
2
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $$\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}, \bar{b}=\hat{i}+\hat{j}$$ and $$\bar{c}$$ be a vector such that $$|\bar{c}-\bar{a}|=4,|(\bar{a} \times \bar{b}) \times \bar{c}|=3$$ and the angle between $$\overline{\mathrm{c}}$$ and $$\overline{\mathrm{a}} \times \overline{\mathrm{b}}$$ is $$\frac{\pi}{6}$$, then $$\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}$$ is equal to

A
$$-3$$
B
$$\frac{3}{2}$$
C
3
D
$$\frac{-3}{2}$$
3
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$a$$ and $$b$$ are positive number such that $$a>b$$, then the minimum value of $$a \sec \theta-b \tan \theta\left(0 < \theta < \frac{\pi}{2}\right)$$ is

A
$$\frac{1}{\sqrt{a^2-b^2}}$$
B
$$\frac{1}{\sqrt{a^2+b^2}}$$
C
$$\sqrt{a^2+b^2}$$
D
$$\sqrt{a^2-b^2}$$
4
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\text { If } l=\lim _\limits{x \rightarrow 0} \frac{x}{|x|+x^2} \text {, then the value of } l \text { is }$$

A
1
B
$$-$$1
C
2
D
non-existant
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12