1
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of line passing through the point $$(1,2,3)$$ and perpendicular to the lines $$\frac{x-2}{3}=\frac{y-1}{2}=\frac{z+1}{-2}$$ and $$\frac{x}{2}=\frac{y}{-3}=\frac{z}{1}$$ is

A
$$\overline{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(4 \hat{\mathrm{i}}+7 \hat{\mathrm{j}}-13 \hat{\mathrm{k}})$$
B
$$\overline{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(-4 \hat{\mathrm{i}}+7 \hat{\mathrm{j}}-13 \hat{\mathrm{k}})$$
C
$$\overline{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(-4 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}-13 \hat{\mathrm{k}})$$
D
$$\overline{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(4 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}-13 \hat{\mathrm{k}})$$
2
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let a random variable $$\mathrm{X}$$ have a Binomial distribution with mean 8 and variance 4. If $$\mathrm{P}(\mathrm{X} \leq 2)=\frac{\mathrm{K}}{2^{16}}$$, then $$\mathrm{K}$$ is

A
17
B
121
C
136
D
137
3
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\pi+\left(\sin ^{-1} \frac{4}{5}+\sin ^{-1} \frac{5}{13}+\sin ^{-1} \frac{16}{65}\right)$$ is equal to

A
$$\frac{\pi}{2}$$
B
$$\frac{5 \pi}{4}$$
C
$$\frac{3 \pi}{2}$$
D
$$\frac{7 \pi}{4}$$
4
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the angles of a triangle are in the ratio $$4: 1: 1$$, then the ratio of the longest side to its perimeter is

A
$$\sqrt{3}:(2+\sqrt{3})$$
B
$$2:(1+\sqrt{3})$$
C
$$1:(2+\sqrt{3})$$
D
$$2: 3$$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12