1
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of line passing through the point $$(1,2,3)$$ and perpendicular to the lines $$\frac{x-2}{3}=\frac{y-1}{2}=\frac{z+1}{-2}$$ and $$\frac{x}{2}=\frac{y}{-3}=\frac{z}{1}$$ is

A
$$\overline{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(4 \hat{\mathrm{i}}+7 \hat{\mathrm{j}}-13 \hat{\mathrm{k}})$$
B
$$\overline{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(-4 \hat{\mathrm{i}}+7 \hat{\mathrm{j}}-13 \hat{\mathrm{k}})$$
C
$$\overline{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(-4 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}-13 \hat{\mathrm{k}})$$
D
$$\overline{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(4 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}-13 \hat{\mathrm{k}})$$
2
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let a random variable $$\mathrm{X}$$ have a Binomial distribution with mean 8 and variance 4. If $$\mathrm{P}(\mathrm{X} \leq 2)=\frac{\mathrm{K}}{2^{16}}$$, then $$\mathrm{K}$$ is

A
17
B
121
C
136
D
137
3
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\pi+\left(\sin ^{-1} \frac{4}{5}+\sin ^{-1} \frac{5}{13}+\sin ^{-1} \frac{16}{65}\right)$$ is equal to

A
$$\frac{\pi}{2}$$
B
$$\frac{5 \pi}{4}$$
C
$$\frac{3 \pi}{2}$$
D
$$\frac{7 \pi}{4}$$
4
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the angles of a triangle are in the ratio $$4: 1: 1$$, then the ratio of the longest side to its perimeter is

A
$$\sqrt{3}:(2+\sqrt{3})$$
B
$$2:(1+\sqrt{3})$$
C
$$1:(2+\sqrt{3})$$
D
$$2: 3$$
MHT CET Papers
EXAM MAP