The solution of the differential equation $$\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{y}{x}=\sin x$$ is
Let $$f:[-1,2] \rightarrow[0, \infty)$$ be a continuous function such that $$\mathrm{f}(x)=\mathrm{f}(1-x), \forall x \in[-1,2]$$
Let $$\mathrm{R}_1=\int_{-1}^2 x \mathrm{f}(x) \mathrm{d} x$$ and $$\mathrm{R}_2$$ be the area of the region bounded by $$y=\mathrm{f}(x), x=-1, x=2$$ and the $$\mathrm{X}$$-axis, then $$\mathrm{R}_2$$ is
The equation of line passing through the point $$(1,2,3)$$ and perpendicular to the lines $$\frac{x-2}{3}=\frac{y-1}{2}=\frac{z+1}{-2}$$ and $$\frac{x}{2}=\frac{y}{-3}=\frac{z}{1}$$ is
Let a random variable $$\mathrm{X}$$ have a Binomial distribution with mean 8 and variance 4. If $$\mathrm{P}(\mathrm{X} \leq 2)=\frac{\mathrm{K}}{2^{16}}$$, then $$\mathrm{K}$$ is