If $$\mathrm{A}$$ and $$\mathrm{B}$$ are two events such that $$\mathrm{P}(\mathrm{A})=\frac{1}{3}, \mathrm{P}(\mathrm{B})=\frac{1}{5}, \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{1}{3}$$, then the value of $$\mathrm{P}\left(\mathrm{A}^{\prime} / \mathrm{B}^{\prime}\right)+\mathrm{P}\left(\mathrm{B}^{\prime} / \mathrm{A}^{\prime}\right)$$ is
If the general solution of the equation $$\frac{\tan 3 x-1}{\tan 3 x+1}=\sqrt{3}$$ is $$x=\frac{\mathrm{n} \pi}{\mathrm{p}}+\frac{7 \pi}{\mathrm{q}}, \mathrm{n}, \mathrm{p}, \mathrm{q}, \in \mathrm{Z}$$, then $$\frac{p}{q}$$ is
If the area of the parallelogram with $$\bar{a}$$ and $$\bar{b}$$ as two adjacent sides is $$16 \mathrm{sq}$$. units, then the area of the parallelogram having $$3 \overline{\mathrm{a}}+2 \overline{\mathrm{b}}$$ and $$\overline{\mathrm{a}}+3 \overline{\mathrm{b}}$$ as two adjacent sides (in sq. units) is
The value of $$\int(1-\cos x) \cdot \operatorname{cosec}^2 x d x$$ is