1
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$A$$ rod $$A B, 13$$ feet long moves with its ends $$A$$ and $$B$$ on two perpendicular lines $$O X$$ and $$O Y$$ respectively. When $$A$$ is 5 feet from $$O$$, it is moving away at the rate of $$3 \mathrm{feet} / \mathrm{sec}$$. At this instant, $$\mathrm{B}$$ is moving at the rate

A
$$\frac{5}{4} \mathrm{ft} / \mathrm{sec}$$ upwards.
B
$$\frac{4}{5} \mathrm{ft} / \mathrm{sec}$$ upwards.
C
$$\frac{5}{4} \mathrm{ft} / \mathrm{sec}$$ downwards.
D
$$\frac{4}{5} \mathrm{ft} / \mathrm{sec}$$ downwards.
2
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\mathrm{f}(x)=\left\{\begin{array}{cc}\frac{x-3}{|x-3|}+\mathrm{a} & , \quad x < 3 \\ \mathrm{a}+\mathrm{b} & , \quad x=3 \\ \frac{|x-3|}{x-3}+\mathrm{b}, & x>3\end{array}\right.$$

Is continuous at $$x=3$$, then the value of $$\mathrm{a}-\mathrm{b}$$ is

A
$$-$$1
B
0
C
1
D
2
3
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the tangent to the curve $$y=\sqrt{9-2 x^2}$$, at the point where the ordinate and abscissa are equal, is

A
$$2 x+y+\sqrt{3}=0$$
B
$$2 x+y+3 \sqrt{3}=0$$
C
$$2 x-y-3 \sqrt{3}=0$$
D
$$2 x+y-3 \sqrt{3}=0$$
4
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overline{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$$ and $$\overline{\mathrm{c}}=3 \hat{\mathrm{i}}-\hat{\mathrm{j}}$$ are such that $$\bar{a}+\lambda \bar{b}$$ is perpendicular to $$\bar{c}$$, then the value of $$\lambda$$ is

A
$$\frac{-1}{5}$$
B
3
C
$$\frac{3}{5}$$
D
$$\frac{-3}{5}$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12