Let $$\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}, \bar{b}=\hat{i}+\hat{j}$$ and $$\bar{c}$$ be a vector such that $$|\bar{c}-\bar{a}|=4,|(\bar{a} \times \bar{b}) \times \bar{c}|=3$$ and the angle between $$\overline{\mathrm{c}}$$ and $$\overline{\mathrm{a}} \times \overline{\mathrm{b}}$$ is $$\frac{\pi}{6}$$, then $$\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}$$ is equal to
If $$a$$ and $$b$$ are positive number such that $$a>b$$, then the minimum value of $$a \sec \theta-b \tan \theta\left(0 < \theta < \frac{\pi}{2}\right)$$ is
$$\text { If } l=\lim _\limits{x \rightarrow 0} \frac{x}{|x|+x^2} \text {, then the value of } l \text { is }$$
If $$y=[(x+1)(2 x+1)(3 x+1) \ldots(\mathrm{n} x+1)]^{\frac{3}{2}}$$, then $$\frac{\mathrm{d} y}{\mathrm{~d} x}$$ at $$x=0$$ is