1
GATE EE 2014 Set 2
MCQ (Single Correct Answer)
+2
-0.6
To evaluate the double integral $$\int\limits_0^8 {\left( {\int\limits_{y/2}^{\left( {y/2} \right) + 1} {\left( {{{2x - y} \over 2}} \right)dx} } \right)dy,\,\,} $$ we make the substitution $$u = \left( {{{2x - y} \over 2}} \right)$$ and $$v = {y \over 2}.$$ The integral will reduce to
A
$$\int\limits_0^4 {\left( {\int\limits_0^2 {2udu} } \right)dv} $$
B
$$\int\limits_0^4 {\left( {\int\limits_0^1 {2udu} } \right)dv} $$
C
$$\int\limits_0^4 {\left( {\int\limits_0^1 {udu} } \right)dv} $$
D
$$\int\limits_0^4 {\left( {\int\limits_0^{21} {2udu} } \right)dv} $$
2
GATE EE 2014 Set 2
MCQ (Single Correct Answer)
+2
-0.6
The minimum value of the function $$f\left( x \right) = {x^3} - 3{x^2} - 24x + 100$$ in the interval $$\left[ { - 3,3} \right]$$ is
A
$$20$$
B
$$28$$
C
$$16$$
D
$$32$$
3
GATE EE 2014 Set 2
Numerical
+2
-0
Consider a die with the property that the probability of a face with $$'n'$$ dots showing up is proportional to $$'n'.$$ The probability of the face with three dots showing up is _________.
Your input ____
4
GATE EE 2014 Set 2
Numerical
+2
-0
Let $$X$$ be a random variable with probability density function $$f\left( x \right) = \left\{ {\matrix{ {0.2} & {for\,\left| x \right| \le 1} \cr {0.1} & {for\,1 < \left| x \right| \le 4} \cr 0 & {otherwise} \cr } } \right.$$

The probability $$P\left( {0.5 < x < 5} \right)$$ is _________.

Your input ____
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12