1
GATE EE 2014 Set 2
+1
-0.3
Minimum of the real valued function $$f\left( x \right) = {\left( {x - 1} \right)^{2/3}}$$ occurs at $$x$$ equal to
A
$$- \infty$$
B
$$0$$
C
$$1$$
D
$$\infty$$
2
GATE EE 2014 Set 2
+2
-0.6
To evaluate the double integral $$\int\limits_0^8 {\left( {\int\limits_{y/2}^{\left( {y/2} \right) + 1} {\left( {{{2x - y} \over 2}} \right)dx} } \right)dy,\,\,}$$ we make the substitution $$u = \left( {{{2x - y} \over 2}} \right)$$ and $$v = {y \over 2}.$$ The integral will reduce to
A
$$\int\limits_0^4 {\left( {\int\limits_0^2 {2udu} } \right)dv}$$
B
$$\int\limits_0^4 {\left( {\int\limits_0^1 {2udu} } \right)dv}$$
C
$$\int\limits_0^4 {\left( {\int\limits_0^1 {udu} } \right)dv}$$
D
$$\int\limits_0^4 {\left( {\int\limits_0^{21} {2udu} } \right)dv}$$
3
GATE EE 2014 Set 2
+2
-0.6
The minimum value of the function $$f\left( x \right) = {x^3} - 3{x^2} - 24x + 100$$ in the interval $$\left[ { - 3,3} \right]$$ is
A
$$20$$
B
$$28$$
C
$$16$$
D
$$32$$
4
GATE EE 2014 Set 2
Numerical
+2
-0
Consider a die with the property that the probability of a face with $$'n'$$ dots showing up is proportional to $$'n'.$$ The probability of the face with three dots showing up is _________.
GATE EE Papers
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
EXAM MAP
Joint Entrance Examination