1
GATE EE 2014 Set 2
Numerical
+2
-0
A system with the open loop transfer function $$G\left( s \right) = {K \over {s\left( {s + 2} \right)\left( {{s^2} + 2s + 2} \right)}}$$ is connected in a negative feedback configuration with a feedback gain of unity. For the closed loop system to be marginally stable, the value of $$K$$ is ________.
Your input ____
2
GATE EE 2014 Set 2
MCQ (Single Correct Answer)
+2
-0.6
For the transfer function $$G\left( s \right) = {{5\left( {s + 4} \right)} \over {s\left( {s + 0.25} \right)\left( {{s^2} + 4s + 25} \right)}}.$$ The values of the constant gain term and the highest corner frequency of the Bode plot respectively are
A
$$3.2, 5.0$$
B
$$16.0, 4.0$$
C
$$3.2, 4.0$$
D
$$16.0, 5.0$$
3
GATE EE 2014 Set 2
MCQ (Single Correct Answer)
+1
-0.3
The state transition matrix for the system $$\left[ {\matrix{ {\mathop {{x_1}}\limits^ \bullet } \cr {\mathop {{x_2}}\limits^ \bullet } \cr } } \right] = \left[ {\matrix{ 1 & 0 \cr 1 & 1 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right] + \left[ {\matrix{ 1 \cr 1 \cr } } \right]u$$ is
A
$$\left[ {\matrix{ {{e^t}} & 0 \cr {{e^t}} & {{e^t}} \cr } } \right]$$
B
$$\left[ {\matrix{ {{e^t}} & 0 \cr {{t^2}{e^t}} & {{e^t}} \cr } } \right]$$
C
$$\left[ {\matrix{ {{e^t}} & 0 \cr {t{e^t}} & {{e^t}} \cr } } \right]$$
D
$$\left[ {\matrix{ {{e^t}} & {t{e^t}} \cr 0 & {{e^t}} \cr } } \right]$$
4
GATE EE 2014 Set 2
MCQ (Single Correct Answer)
+2
-0.6
The $$SOP$$ (sum of products) from of a Boolean function is $$\sum \left( {0,1,3,7,11} \right),$$ where inputs are $$A,B,C,D$$ ($$A$$ is $$MSB$$, and $$D$$ is $$LSB$$). The equivalent minimized expression of the function is
A
$$\left( {\overline B + C} \right)\left( {\overline A + C} \right)\left( {\overline A + \overline B } \right)\left( {\overline C + D} \right)$$
B
$$\left( {\overline B + C} \right)\left( {\overline A + C} \right)\left( {\overline A + \overline C } \right)\left( {\overline C + D} \right)$$
C
$$\left( {\overline B + C} \right)\left( {\overline A + C} \right)\left( {\overline A + \overline C } \right)\left( {\overline C + \overline D } \right)$$
D
$$\left( {\overline B + C} \right)\left( {A + \overline B } \right)\left( {\overline A + \overline B } \right)\left( {\overline C + D} \right)$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12