1
GATE EE 2014 Set 2
Numerical
+1
-0
The closed-loop transfer function of a system is $$T\left( s \right) = {4 \over {\left( {{s^2} + 0.4s + 4} \right)}}.$$ The steady state error due to unit step input is ________
2
GATE EE 2014 Set 2
Numerical
+2
-0
A system with the open loop transfer function $$G\left( s \right) = {K \over {s\left( {s + 2} \right)\left( {{s^2} + 2s + 2} \right)}}$$ is connected in a negative feedback configuration with a feedback gain of unity. For the closed loop system to be marginally stable, the value of $$K$$ is ________.
3
GATE EE 2014 Set 2
+2
-0.6
For the transfer function $$G\left( s \right) = {{5\left( {s + 4} \right)} \over {s\left( {s + 0.25} \right)\left( {{s^2} + 4s + 25} \right)}}.$$ The values of the constant gain term and the highest corner frequency of the Bode plot respectively are
A
$$3.2, 5.0$$
B
$$16.0, 4.0$$
C
$$3.2, 4.0$$
D
$$16.0, 5.0$$
4
GATE EE 2014 Set 2
+1
-0.3
The state transition matrix for the system $$\left[ {\matrix{ {\mathop {{x_1}}\limits^ \bullet } \cr {\mathop {{x_2}}\limits^ \bullet } \cr } } \right] = \left[ {\matrix{ 1 & 0 \cr 1 & 1 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right] + \left[ {\matrix{ 1 \cr 1 \cr } } \right]u$$ is
A
$$\left[ {\matrix{ {{e^t}} & 0 \cr {{e^t}} & {{e^t}} \cr } } \right]$$
B
$$\left[ {\matrix{ {{e^t}} & 0 \cr {{t^2}{e^t}} & {{e^t}} \cr } } \right]$$
C
$$\left[ {\matrix{ {{e^t}} & 0 \cr {t{e^t}} & {{e^t}} \cr } } \right]$$
D
$$\left[ {\matrix{ {{e^t}} & {t{e^t}} \cr 0 & {{e^t}} \cr } } \right]$$
GATE EE Papers
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
EXAM MAP
Joint Entrance Examination