1
GATE EE 2001
MCQ (Single Correct Answer)
+1
-0.3
The polar plot of a type-$$1, 3$$-pole, open-loop system is shown in Fig. below. The closed loop system is GATE EE 2001 Control Systems - Polar Nyquist and Bode Plot Question 49 English
A
always stable
B
marginally stable
C
unstable with one pole on the right half $$s$$-plane
D
unstable with two poles on the right half $$s$$-plane.
2
GATE EE 2001
MCQ (Single Correct Answer)
+1
-0.3
The asymptotic approximation of the log-magnitude versus frequency plot of a minimum phase system with real poles and one zero is shown in Fig. Its transfer functions is GATE EE 2001 Control Systems - Polar Nyquist and Bode Plot Question 48 English
A
$${{20\left( {s + 5} \right)} \over {s\left( {s + 2} \right)\left( {s + 25} \right)}}$$
B
$${{10\left( {s + 5} \right)} \over {{{\left( {s + 2} \right)}^2}\left( {s + 25} \right)}}$$
C
$${{20\left( {s + 5} \right)} \over {{s^2}\left( {s + 2} \right)\left( {s + 25} \right)}}$$
D
$${{50\left( {s + 5} \right)} \over {{s^2}\left( {s + 2} \right)\left( {s + 25} \right)}}$$
3
GATE EE 2001
Subjective
+5
-0
A unity feedback system has an open-loop transfer function of $$G\left( s \right) = {{10000} \over {s{{\left( {s + 10} \right)}^2}}}$$
(a) Determine the magnitude of $$G\left( {j\omega } \right)$$ in dB at an angular frequency of $$\omega = 20rad/\sec .$$
(b) Determine the phase margin in degrees.
(c) Determine the gain margin in $$dB.$$
(d) Is the system stable or unstable?
4
GATE EE 2001
MCQ (Single Correct Answer)
+1
-0.3
Given the homogeneous state-space equation $$\mathop X\limits^ \bullet = \left[ {\matrix{ { - 3} & 1 \cr 0 & { - 2} \cr } } \right]x$$ the steady state value of $$\,\,{x_{ss}}\,\, = \mathop {Lim}\limits_{t \to \infty } x\left( t \right),$$ given the initial state value of $$x\left( 0 \right) = {\left[ {10 - 10} \right]^T},\,\,is$$
A
$${x_{ss}} = \left[ {\matrix{ 0 \cr 0 \cr } } \right]$$
B
$${x_{ss}} = \left[ {\matrix{ { - 3} \cr { - 2} \cr } } \right]$$
C
$${x_{ss}} = \left[ {\matrix{ { - 10} \cr {10} \cr } } \right]$$
D
$${x_{ss}} = \left[ {\matrix{ \infty \cr \infty \cr } } \right]$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12