1
GATE EE 1998
MCQ (Single Correct Answer)
+1
-0.3
The Laplace transform of $$\,\left( {{t^2} - 2t} \right)\,u\left( {t - 1} \right)$$ is ______________.
A
$${2 \over {{s^3}}}{e^{ - s}} - {2 \over {{s^2}}}{e^{ - s}}$$
B
$$\,\,{2 \over {{s^3}}}{e^{ - 2s}} - {2 \over {{s^2}}}{e^{ - s}}$$
C
$${2 \over {{s^3}}}{e^{ - s}} - {2 \over s}{e^{ - s}}$$
D
None
2
GATE EE 1998
MCQ (Single Correct Answer)
+2
-0.6
The value of $$\,\,\,\int\limits_1^2 {{1 \over x}\,\,\,dx\,\,\,\,} $$ computed using simpson's rule with a step size of $$h=0.25$$ is
A
$$0.69430$$
B
$$0.69385$$
C
$$0.69325$$
D
$$0.69415$$
3
GATE EE 1998
MCQ (Single Correct Answer)
+1
-0.3
If $$A = \left[ {\matrix{ 5 & 0 & 2 \cr 0 & 3 & 0 \cr 2 & 0 & 1 \cr } } \right]$$ then $${A^{ - 1}} = $$
A
$$\left[ {\matrix{ 1 & 0 & { - 2} \cr 0 & {1/3} & 0 \cr { - 2} & 0 & 5 \cr } } \right]$$
B
$$\left[ {\matrix{ 5 & 0 & 2 \cr 0 & { - 1/3} & 0 \cr 2 & 0 & 1 \cr } } \right]$$
C
$$\left[ {\matrix{ {1/5} & 0 & {1/2} \cr 0 & {1/3} & 0 \cr {1/2} & 0 & 1 \cr } } \right]$$
D
$$\left[ {\matrix{ {1/5} & 0 & { - 1/2} \cr 0 & {1/3} & 0 \cr { - 1/2} & 0 & 1 \cr } } \right]$$
4
GATE EE 1998
MCQ (Single Correct Answer)
+1
-0.3
If the vector $$\left[ {\matrix{ 1 \cr 2 \cr { - 1} \cr } } \right]$$ is an eigen vector of $$A = \left[ {\matrix{ { - 2} & 2 & { - 3} \cr 2 & 1 & { - 6} \cr { - 1} & { - 2} & 0 \cr } } \right]$$ then one of the eigen value of $$A$$ is
A
$$1$$
B
$$2$$
C
$$5$$
D
$$-1$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12