1
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Consider a Boolean function $$f(w, x, y, z).$$ Suppose that exactly one of its inputs is allowed to change at a time. If the function happens to be true for two input vectors $${i_1} = < {w_1},{x_1},{y_1},{z_1} > $$ and $${i_2} = < {w_2},{x_2},{y_2},{z_2} > ,$$ we would like the function to remain true as the input changes from $${i_1}$$ to $${i_2}$$ ($${i_1}$$ and $${i_2}$$ differ in exactly one bit position), without becoming false momentarily. Let $$f\left( {w,x,y,z} \right) = \sum {\left( {5,7,11,12,13,15} \right)} .$$ Which of the following cube covers of $$f$$ will entire that the required property is satisfied?
A
$$\overline w xz,\,wx\overline y ,\,x\overline y z,\,xyz,wyz$$
B
$$wxy,\,\overline w xz,\,wyz$$
C
$$wx\overline {yz} ,\,xz,\,w\overline x yz$$
D
$$wzy,\,wyz,\,wxz,\,\overline w xz,\,x\overline y z,\,xyz$$
2
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Given a set of elements N = {1, 2, ....., n} and two arbitrary subsets $$A\, \subseteq \,N\,$$ and $$B\, \subseteq \,N\,$$, how many of the n! permutations $$\pi $$ from N to N satisfy $$\min \,\left( {\pi \,\left( A \right)} \right) = \min \,\left( {\pi \,\left( B \right)} \right)$$, where min (S) is the smallest integer in the set of integers S, and $${\pi \,\left( S \right)}$$ is the set of integers obtained by applying permutation $${\pi}$$ to each element of S?
A
$$\left( {n - \left| {A\, \cup \,B} \right|} \right)\,\left| A \right|\,\left| B \right|$$
B
$$\left( {{{\left| A \right|}^2} + {{\left| B \right|}^2}} \right)\,{n^2}$$
C
$$n!{{\left| {A\, \cap \,B} \right|} \over {\left| {A\, \cup B} \right|}}$$
D
$$\,{{{{\left| {A\, \cap \,B} \right|}^2}} \over {\left( {\matrix{ n \cr {\left| {A\, \cup \,B} \right|} \cr } } \right)}}$$
3
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
What are the eigen values of the matrix $$P$$ given below? $$$P = \left( {\matrix{ a & 1 & 0 \cr 1 & a & 1 \cr 0 & 1 & a \cr } } \right)$$$
A
$$a,a - \sqrt {2,} a + \sqrt 2 $$
B
$$a,a,a$$
C
$$0,a,2a$$
D
$$ - a,2a,2a$$
4
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
$$F$$ is an $$n$$ $$x$$ $$n$$ real matrix. $$b$$ is an $$n$$ $$x$$ $$1$$ real vector. Suppose there are two $$n$$ $$x$$ $$1$$ vectors, $$u$$ and $$v$$ such that $$u \ne v$$, and $$Fu = b,\,\,\,\,Fv = b$$

Which one of the following statements is false?

A
Dererminant of $$F$$ is zero
B
There are an infinite number of solutions to $$Fx$$ $$=$$ $$b$$
C
There is an $$x \ne 0$$ such that $$Fx = 0$$
D
$$F$$ must have two identical rows
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12