1
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
A logical binary relation $$ \odot $$, is defined as follows: GATE CSE 2006 Discrete Mathematics - Mathematical Logic Question 37 English

Let ~ be the unary negation (NOT) operator, with higher precedence then $$ \odot $$. Which one of the following is equivalent to $$A \wedge B?$$

A
$$\left( { \sim A \odot B} \right)$$
B
$$\left( { \sim A \odot \sim B} \right)$$
C
$$ \sim \left( { \sim A \odot \sim B} \right)$$
D
$$ \sim \left( { \sim A \odot B} \right)$$
2
GATE CSE 2006
MCQ (Single Correct Answer)
+1
-0.3
In a certain town, the probability that it will rain in the afternoon is known to be 0.6. Moreover, meteorological data indicates that if the temperature at noon is less than or equal to $${25^ \circ }$$ C, the probability that it will rain in the afternoon is 0.4. The temperature at noon is equally likely to be above $${25^ \circ }$$ C, or at/below $${25^ \circ }$$ C. What is the probability that it will rain in the afternoon on a day when the temperature at noon is above $${25^ \circ }$$ C?
A
0.4
B
0.6
C
0.8
D
0.9
3
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Consider the following propositional statements:


$${\rm P}1:\,\,\left( {\left( {A \wedge B} \right) \to C} \right) \equiv \left( {\left( {A \to C} \right) \wedge \left( {B \to C} \right)} \right)$$
$${\rm P}2:\,\,\left( {\left( {A \vee B} \right) \to C} \right) \equiv \left( {\left( {A \to C} \right) \vee \left( {B \to C} \right)} \right)$$ Which one of the following is true?

A
$$P1$$ is tautology, but not $$P2$$
B
$$P2$$ is tautology, but not $$P1$$
C
$$P1$$ and $$P2$$ are both tautologies
D
Both $$P1$$ and $$P2$$ are not tautologies
4
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Which one of the first order predicate calculus statements given below correctly expresses the following English statement?

Tigers and lion attack if they are hungry of threatened.

A
$$\forall x[(tiger(x) \wedge lion(x)) \to $$$$\{ (hungry(x) \vee threatened(x)) \to attacks(x)\} ]$$
B
$$\forall x[(tiger(x) \vee lion(x)) \to $$$$\{ (hungry(x) \wedge threatened(x)) \to attacks(x)\} ]$$
C
$$\forall x[(tiger(x) \vee lion(x)) \to $$$$\{ attacks(x) \to (hungry(x)) \vee threatened(x))\} ]$$
D
$$\forall x[(tiger(x) \vee lion(x)) \to $$$$\{ (hungry(x) \vee threatened(x)) \to attacks(x)\} ]$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12