1
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Consider three processes, all arriving at time zero, with total execution time of $$10,20,$$ and $$30$$ units, respectively. Each process spends the first $$20$$% of execution time doing $${\rm I}/O$$, the next $$70$$% of time doing computation, and the last $$10$$% of time doing $${\rm I}/O$$ again. The operating system uses a shortest remaining compute time first scheduling algorithm and scheduling a new process either when the running processes gets blocked on $${\rm I}/O$$ or when the running process finishes its compute burst. Assume that all $${\rm I}/O$$ operations can be overlapped as much as possible. For what percentage of time does the $$CPU$$ remain idle?
A
$$0$$%
B
$$10.6$$%
C
$$30.0$$%
D
$$89.4$$%
2
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Consider three processes (process id $$0,1,2,$$ respectively) with compute time bursts $$2, 4,$$ and $$8$$ time units. All processes arrive at time zero. Consider the longest remaining time first $$(LRTF)$$ scheduling algorithm. In $$LRTF$$ ties are broken by giving priority to the process with the lowest process id. The average turn around time is
A
$$13$$ units
B
$$14$$ units
C
$$15$$ units
D
$$16$$ units
3
GATE CSE 2006
MCQ (Single Correct Answer)
+1
-0.3
Consider three $$CPU$$-intensive process, which require $$10,20$$ and $$30$$ time units and arrive at times $$0,2$$ and $$6$$ respectively. How many context switches are needed if the operating system implements a shortest remaining time first scheduling algorithm? Do not count the context switches at time zero and at the end.
A
$$1$$
B
$$2$$
C
$$3$$
D
$$4$$
4
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Consider this C code to swap two integers and these five statements:
void swap(int *px, int *py) 
{ 
    *px = *px - *py; 
    *py = *px + *py; 
    *px = *py - *px; 
}
S1: will generate a compilation error

S2: may generate a segmentation fault at runtime depending on the arguments passed

S3: correctly implements the swap procedure for all input pointers referring to integers stored in memory locations accessible to the process

S4: implements the swap procedure correctly for some but not all valid input pointers

S5: may add or subtract integers and pointers.
A
S1
B
S2 and S3
C
S2 and S4
D
S2 and S5
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12