1
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Consider the undirected graph $$G$$ defined as follows. The vertices of $$G$$ are bit strings of length $$n$$. We have an edge between vertex $$u$$ and vertex $$v$$ if and only if $$u$$ and $$v$$ differ in exactly one bit position (in other words, $$v$$ can be obtained from $$u$$ by flipping a single bit). The ratio of the choromatic number of $$G$$ to the diameter of $$G$$ is
A
$$1/{2^{n - 1}}$$
B
$$1/n$$
C
$$2/n$$
D
$$3/n$$
2
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
The $${2^n}$$ vertices of a graph $$G$$ correspond to all subsets of a set of size $$n$$, for $$n \ge 6$$. Two vertices of $$G$$ are adjacent if and only if the corresponding sets intersect in exactly two elements.

The maximum degree of a vertex in $$G$$ is

A
$$\left( {\mathop 2\limits^{n/2} } \right){2^{n/2}}$$
B
$${2^{n - 2}}$$
C
$${2^{n - 3}} \times 3$$
D
$${2^{n - 1}}$$
3
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
The $${2^n}$$ vertices of a graph $$G$$ correspond to all subsets of a set of size $$n$$, for $$n \ge 6$$. Two vertices of $$G$$ are adjacent if and only if the corresponding sets intersect in exactly two elements.

the number of vertices of degree zero in $$G$$ is

A
$$1$$
B
$$n$$
C
$$n + 1$$
D
$${2^n}$$
4
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
What is the cardinality of the set of integers $$X$$ defined below?
$$X = $$ {$$n\left| {1 \le n \le 123,\,\,\,\,\,n} \right.$$ is not divisible by either $$2, 3$$ or $$5$$ }
A
$$28$$
B
$$33$$
C
$$37$$
D
$$44$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12