1
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Barrier is a synchronization construct where a set of processes synchronizes globally i.e. each process in the set arrives at the barrier and waits for all others to arrive and then all processes leave the barrier. Let the number of processes in the set be three and S be a binary semaphore with the usual P and V functions. Consider the following C implementation of a barrier with line numbers shown on left.
void barrier (void) { 
1: P(S); 
2: process_arrived++; 
3: V(S); 
4: while (process_arrived !=3); 
5: P(S); 
6: process_left++; 
7: if (process_left==3) { 
8: process_arrived = 0; 
9: process_left = 0; 
10: } 
11: V(S); 
} 
The variables process_arrived and process_left are shared among all processes and are initialized to zero. In a concurrent program all the three processes call the barrier function when they need to synchronize globally.
The above implementation of barrier is incorrect. Which one of the following is true?
A
The barrier implementation is wrong due to the use of binary semaphore S.
B
The barrier implementation may lead to deadlock if two invocations are used in immediate succession
C
Lines 6 to 10 need not be inside a critical section.
D
The barrier implementation is correct if there are only two processes instead of three.
2
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
A Computer system supports $$32$$-bit virtual addresses as well as $$32$$-bit physical addresses. Since the virtual address space is of the same size as the physical address space, the operating system designers decide to get rid of the virtual memory entirely. Which one of the following is true?
A
Efficient implementation of multi-user support is no longer possible.
B
The processor cache organization can be made more efficient now.
C
Hardware support for memory management is no longer needed.
D
$$CPU$$ scheduling can be made more efficient now.
3
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Consider the following snapshot of a system running n processes. Process i is holding xi instances of a resource R, for $$1 \le i \le n$$. Currently, all instances of R are occupied. Further, for all i, process i has placed a request for an additional yi instances while holding the xi instances it already has. There are exactly two processes p and q such that yp = yq = 0. Which one of the following can serve as a necessary condition to guarantee that the system is not approaching a deadlock?
A
$$\min ({x_p},{x_q}) < {\max _{k \ne p,q}}{y_k}$$
B
$${x_p} + {x_q} \ge {\min _{k \ne p,q}}{y_k}$$
C
$$\max ({x_p},{x_q}) > 1$$
D
$$\min ({x_p},{x_q}) > 1$$
4
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Consider this C code to swap two integers and these five statements:
void swap(int *px, int *py) 
{ 
    *px = *px - *py; 
    *py = *px + *py; 
    *px = *py - *px; 
}
S1: will generate a compilation error

S2: may generate a segmentation fault at runtime depending on the arguments passed

S3: correctly implements the swap procedure for all input pointers referring to integers stored in memory locations accessible to the process

S4: implements the swap procedure correctly for some but not all valid input pointers

S5: may add or subtract integers and pointers.
A
S1
B
S2 and S3
C
S2 and S4
D
S2 and S5
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12