1
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Consider the following propositional statements:


$${\rm P}1:\,\,\left( {\left( {A \wedge B} \right) \to C} \right) \equiv \left( {\left( {A \to C} \right) \wedge \left( {B \to C} \right)} \right)$$
$${\rm P}2:\,\,\left( {\left( {A \vee B} \right) \to C} \right) \equiv \left( {\left( {A \to C} \right) \vee \left( {B \to C} \right)} \right)$$ Which one of the following is true?

A
$$P1$$ is tautology, but not $$P2$$
B
$$P2$$ is tautology, but not $$P1$$
C
$$P1$$ and $$P2$$ are both tautologies
D
Both $$P1$$ and $$P2$$ are not tautologies
2
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Which one of the first order predicate calculus statements given below correctly expresses the following English statement?

Tigers and lion attack if they are hungry of threatened.

A
$$\forall x[(tiger(x) \wedge lion(x)) \to $$$$\{ (hungry(x) \vee threatened(x)) \to attacks(x)\} ]$$
B
$$\forall x[(tiger(x) \vee lion(x)) \to $$$$\{ (hungry(x) \wedge threatened(x)) \to attacks(x)\} ]$$
C
$$\forall x[(tiger(x) \vee lion(x)) \to $$$$\{ attacks(x) \to (hungry(x)) \vee threatened(x))\} ]$$
D
$$\forall x[(tiger(x) \vee lion(x)) \to $$$$\{ (hungry(x) \vee threatened(x)) \to attacks(x)\} ]$$
3
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
A Computer system supports $$32$$-bit virtual addresses as well as $$32$$-bit physical addresses. Since the virtual address space is of the same size as the physical address space, the operating system designers decide to get rid of the virtual memory entirely. Which one of the following is true?
A
Efficient implementation of multi-user support is no longer possible.
B
The processor cache organization can be made more efficient now.
C
Hardware support for memory management is no longer needed.
D
$$CPU$$ scheduling can be made more efficient now.
4
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Consider the following snapshot of a system running n processes. Process i is holding xi instances of a resource R, for $$1 \le i \le n$$. Currently, all instances of R are occupied. Further, for all i, process i has placed a request for an additional yi instances while holding the xi instances it already has. There are exactly two processes p and q such that yp = yq = 0. Which one of the following can serve as a necessary condition to guarantee that the system is not approaching a deadlock?
A
$$\min ({x_p},{x_q}) < {\max _{k \ne p,q}}{y_k}$$
B
$${x_p} + {x_q} \ge {\min _{k \ne p,q}}{y_k}$$
C
$$\max ({x_p},{x_q}) > 1$$
D
$$\min ({x_p},{x_q}) > 1$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12