1
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

For the triangle ABC , with usual notations, if the angles $A, B, C$ are in A.P. and $\mathrm{m} \angle \mathrm{A}=30^{\circ}, \mathrm{c}=3$, then the values of a and b are respectively

A
$\frac{\sqrt{3}}{2}, \frac{3}{2}$
B
$\frac{3}{2}, \frac{3 \sqrt{3}}{2}$
C
$\frac{3 \sqrt{3}}{2}, \frac{3}{2}$
D
$\frac{3}{2}, \frac{\sqrt{3}}{2}$
2
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $p, q, r$ be three statements such that the truth value of $(p \wedge q) \rightarrow(\sim q \vee r)$ is $F$. Then the truth values of $p, q, r$ are respectively

A
$\mathrm{T, F, T.}$
B
$\mathrm{T}, \mathrm{T}, \mathrm{T}$.
C
$\mathrm{F, T, F.}$
D
$\mathrm{T, T, F.}$
3
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let k be a non-zero real number. If $f(x)=\left\{\begin{array}{cl}\frac{\left(\mathrm{e}^x-1\right)^2}{\sin \left(\frac{x}{k}\right) \log \left(1+\frac{x}{4}\right)} & , x \neq 0 \\ 12 & , x=0\end{array}\right.$ is a continuous function, then the value of $k$ is

A
1
B
2
C
4
D
3
4
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The gyromagnetic ratio and Bohr magneton are given respectively by [Given $\rightarrow \mathrm{e}=$ charge on electron, $\mathrm{m}=$ mass of electron, $\mathrm{h}=$ Planck's constant]

A
$\frac{\mathrm{e}}{2 \mathrm{~m}}, \frac{\mathrm{eh}}{4 \pi \mathrm{~m}}$
B
$\frac{\mathrm{eh}}{4 \pi \mathrm{~m}}, \frac{\mathrm{e}}{2 \mathrm{~m}}$
C
$\frac{2 \mathrm{~m}}{\mathrm{e}}, \frac{4 \pi \mathrm{~m}}{\mathrm{eh}}$
D
$\frac{4 \pi \mathrm{~m}}{\mathrm{eh}}, \frac{2 \mathrm{~m}}{\mathrm{e}}$
MHT CET Papers
EXAM MAP