1
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the vectors $a \hat{i}+\hat{j}+\hat{k}, \hat{i}+b \hat{j}+\hat{k}, \hat{i}+\hat{j}+c \hat{k}$ $(a \neq b, c \neq 1)$ are coplanar, then $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$ has the value __________.

A
1
B
$-$1
C
$-$2
D
5
2
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The sides of a triangle are $\sin \theta, \cos \theta$ and $\sqrt{1+\sin \theta \cos \theta}$ for some $0<\theta<\frac{\pi}{2}$, then the greatest angle of a triangle is

A
$\frac{\pi}{3}$
B
$\frac{2 \pi}{3}$
C
$\frac{\pi}{6}$
D
$\frac{5 \pi}{6}$
3
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\lim\limits_{x \rightarrow \infty}\left(\frac{x^2+x+1}{x+1}-a x-b\right)=4$ then

A
$\mathrm{a}=1, \mathrm{~b}=4$
B
$\mathrm{a}=1, \mathrm{~b}=-4$
C
$\mathrm{a}=2, \mathrm{~b}=-3$
D
$\mathrm{a}=2, \mathrm{~b}=3$
4
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=y(x)$ is the solution of the differential equation $x \frac{\mathrm{dy}}{\mathrm{d} x}+2 y=x^2$ satisfying $y(1)=1$, then the value of $y\left(\frac{1}{2}\right)$ is

A
$\frac{7}{64}$
B
  $\frac{1}{4}$
C
$\frac{13}{6}$
D
$\frac{49}{16}$
MHT CET Papers
EXAM MAP