1
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ are three non-coplanar vectors, then $(\bar{a}+\bar{b}+\bar{c}) \cdot[(\bar{a}+\bar{b}) \times(\bar{a}+\bar{c})]$ equals

A
0
B
$[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]$
C
$2[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]$
D
$-[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]$
2
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

In a class of 300 students, every student reads 5 news papers and every news paper is read by 60 students. Then the number of newspapers is

A
at least 30
B
at most 20
C
exactly 25
D
exactly 10
3
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value of $\frac{\log x}{x}$ is

A
$\mathrm{e}$
B
$\mathrm{2 e}$
C
$\frac{1}{\mathrm{e}}$
D
$\frac{2}{\mathrm{e}}$
4
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0
 

Derivative of $\mathrm{e}^x$ w.r.t. $\sqrt{x}$ is

A
$\sqrt{x} \mathrm{e}^x$
B
$-2 \sqrt{x}$
C
$2 \sqrt{x} \mathrm{e}^x$
D
$ \frac{1}{2} \sqrt{x} \mathrm{e}^x$
MHT CET Papers
EXAM MAP