1
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

Find the percentage of unreacted reactant for zero order reaction in 90 second having rate constant $1 \mathrm{~mol} \mathrm{~dm}^{-3} \mathrm{~s}^{-1}$.

A
5%
B
10%
C
15%
D
20%
2
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & a & 3 \\ 3 & 2 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}-2 & 0 & b \\ 7 & -1 & -2 \\ c & 1 & 1\end{array}\right]$ and if matrix $B$ is the inverse of matrix $A$, then value of $4 a+2 b-c$ is

A
6
B
$-$14
C
14
D
$-$6
3
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\int \mathrm{f}(x) \mathrm{d} x=\psi(x)$, then $\int x^5 \mathrm{f}\left(x^3\right) \mathrm{d} x$ is equal to

A
$\frac{1}{3} x^3 \psi\left(x^3\right)-3 \int x^3 \psi\left(x^3\right) \mathrm{d} x+\mathrm{c}$, (where c is a constant of integration)
B
$\frac{1}{3}\left(x^3 \psi\left(x^3\right)-\int x^3 \psi\left(x^3\right) \mathrm{d} x\right)+\mathrm{c}$, (where c is a constant of integration)
C
$\frac{1}{3} x^3 \psi\left(x^3\right)-\int x^2 \psi\left(x^3\right) \mathrm{d} x+\mathrm{c}$, (where c is a constant of integration)
D
$\frac{1}{3}\left(x^3 \psi\left(x^3\right)-\int x^2 \psi\left(x^3\right) \mathrm{d} x\right)+\mathrm{c}$, (where c is a constant of integration)
4
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The population of a town increases at a rate proportional to the population at that time. If the population increases from 40 thousand to 80 thousand in 40 years, then the population in another 40 years will be

A
180000
B
128000
C
160000
D
256000
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12