For an ideal gas, in an isobaric process, the ratio of heat supplied ' $Q$ ' to the work done ' $w$ ' by the system is ( $\gamma=$ ratio of specific heat at constant pressure to that at constant volume)
A particle is performing S.H.M. with an amplitude 4 cm . At the mean position the velocity of the particle is $12 \mathrm{~cm} / \mathrm{s}$. When the speed of the particle becomes $6 \mathrm{~cm} / \mathrm{s}$, the distance of the particle from mean position is
A velocity - time graph of a body is shown below. The distance covered by the body from 6 second to 9 second is
Two identical photocathodes receive light of frequencies ' $\mathrm{n}_1$ ' and ' $\mathrm{n}_2$ '. If the velocities of the emitted photoelectrons of mass ' $m$ ' are ' $\mathrm{V}_1$ ' and ' V , respectively, then ( $\mathrm{h}=$ Planck's constant )