1
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The mean and the standard deviation of 10 observations are 20 and 2 respectively. Each of these 10 observations is multiplied by p and then reduced by $q$, where $p \neq 0$ and $q \neq 0$. If the new mean and new standard deviation (s.d.) become half of the original values, then $q$ is equal to

A
$-20$
B
$-5$
C
$10$
D
$-10$
2
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If Mean value theorem holds for the function $\mathrm{f}(x)=(x-1)(x-2)(x-3), x \in[0,4]$ then the values of $c$ as per the theorem are

A
$2 \pm \frac{4}{\sqrt{3}}$
B
$2 \pm \frac{2}{\sqrt{3}}$
C
$2 \pm \sqrt{2}$
D
$2 \pm \sqrt{3}$
3
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\mathrm{I}=\mathrm{I}=\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^2 \cos x}{1+\mathrm{e}^{-x}} \mathrm{~d} x$ is equal to

A
$\frac{\pi^2}{4}-2$
B
$\frac{\pi^2}{4}+2$
C
$\pi^2-\mathrm{e}^{\frac{\pi}{2}}$
D
$\pi^2+e^{\frac{\pi}{2}}$
4
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=1$ and $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=\hat{\mathrm{j}}-\hat{\mathrm{k}}$, then $\overline{\mathrm{b}}$ is

A
$\hat{i}-\hat{j}+\hat{k}$
B
$2 \hat{j}-\hat{k}$
C
$\hat{i}$
D
$2 \hat{\mathrm{i}}$
MHT CET Papers
EXAM MAP