1
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If Mean value theorem holds for the function $\mathrm{f}(x)=(x-1)(x-2)(x-3), x \in[0,4]$ then the values of $c$ as per the theorem are

A
$2 \pm \frac{4}{\sqrt{3}}$
B
$2 \pm \frac{2}{\sqrt{3}}$
C
$2 \pm \sqrt{2}$
D
$2 \pm \sqrt{3}$
2
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\mathrm{I}=\mathrm{I}=\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^2 \cos x}{1+\mathrm{e}^{-x}} \mathrm{~d} x$ is equal to

A
$\frac{\pi^2}{4}-2$
B
$\frac{\pi^2}{4}+2$
C
$\pi^2-\mathrm{e}^{\frac{\pi}{2}}$
D
$\pi^2+e^{\frac{\pi}{2}}$
3
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=1$ and $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=\hat{\mathrm{j}}-\hat{\mathrm{k}}$, then $\overline{\mathrm{b}}$ is

A
$\hat{i}-\hat{j}+\hat{k}$
B
$2 \hat{j}-\hat{k}$
C
$\hat{i}$
D
$2 \hat{\mathrm{i}}$
4
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the mean and the variance of Binomial variate $X$ are 2 and 1 respectively, then the probability that X takes a value greater than or equal to one is

A
$\frac{1}{16}$
B
$\frac{9}{16}$
C
$\frac{3}{4}$
D
$\frac{15}{16}$
MHT CET Papers
EXAM MAP