1
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If Mean value theorem holds for the function $\mathrm{f}(x)=(x-1)(x-2)(x-3), x \in[0,4]$ then the values of $c$ as per the theorem are

A
$2 \pm \frac{4}{\sqrt{3}}$
B
$2 \pm \frac{2}{\sqrt{3}}$
C
$2 \pm \sqrt{2}$
D
$2 \pm \sqrt{3}$
2
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\mathrm{I}=\mathrm{I}=\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^2 \cos x}{1+\mathrm{e}^{-x}} \mathrm{~d} x$ is equal to

A
$\frac{\pi^2}{4}-2$
B
$\frac{\pi^2}{4}+2$
C
$\pi^2-\mathrm{e}^{\frac{\pi}{2}}$
D
$\pi^2+e^{\frac{\pi}{2}}$
3
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=1$ and $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=\hat{\mathrm{j}}-\hat{\mathrm{k}}$, then $\overline{\mathrm{b}}$ is

A
$\hat{i}-\hat{j}+\hat{k}$
B
$2 \hat{j}-\hat{k}$
C
$\hat{i}$
D
$2 \hat{\mathrm{i}}$
4
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the mean and the variance of Binomial variate $X$ are 2 and 1 respectively, then the probability that X takes a value greater than or equal to one is

A
$\frac{1}{16}$
B
$\frac{9}{16}$
C
$\frac{3}{4}$
D
$\frac{15}{16}$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12