1
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value of $\frac{\log x}{x}$ is

A
$\mathrm{e}$
B
$\mathrm{2 e}$
C
$\frac{1}{\mathrm{e}}$
D
$\frac{2}{\mathrm{e}}$
2
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0
 

Derivative of $\mathrm{e}^x$ w.r.t. $\sqrt{x}$ is

A
$\sqrt{x} \mathrm{e}^x$
B
$-2 \sqrt{x}$
C
$2 \sqrt{x} \mathrm{e}^x$
D
$ \frac{1}{2} \sqrt{x} \mathrm{e}^x$
3
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The curve satisfying the differential equation $y \mathrm{~d} x-\left(x+3 y^2\right) \mathrm{dy}=0$ and passing through the point $(1,1)$ also passes through the point

A
$\left(\frac{1}{4}, \frac{1}{2}\right)$
B
$\left(\frac{1}{4},-\frac{1}{2}\right)$
C
$\left(\frac{1}{3},-\frac{1}{3}\right)$
D
$\left(-\frac{1}{3}, \frac{1}{3}\right)$
4
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value of $z=x+y$, subjected to $x+y \leq 10,5 x+3 y \geq 15, x \leq 6, x, y \geq 0$

A
occurs only at unique point.
B
occurs only at two distinct points.
C
occurs at infinitely many points.
D
does not exist.
MHT CET Papers
EXAM MAP