1
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If X is a random variable with distribution given below

$\mathrm{X}=x_{\mathrm{i}}:$ 0 1 2 3
$\mathrm{P}\left(\mathrm{X}=x_{\mathrm{i}}\right):$ $\mathrm{k}$ $\mathrm{3k}$ $\mathrm{3k}$ $\mathrm{k}$

Then the value of $k$ and its variance are respectively given by

A
$\frac{1}{8}, \frac{22}{27}$
B
$\frac{1}{8}, \frac{23}{27}$
C
$\frac{1}{8}, \frac{8}{9}$
D
$\frac{1}{8}, \frac{3}{4}$
2
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

An urn contains nine balls of which three are red, four are blue and two are green. Three balls are drawn at random without replacement from the urn. The probability, that the three balls have different colours, is

A
$\frac{1}{3}$
B
$\frac{2}{7}$
C
$\frac{1}{21}$
D
$\frac{2}{23}$
3
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The area (in sq. units) bounded by the curves $y=(x+1)^2, y=(x-1)^2$ and the line $y=\frac{1}{4}$ is

A
$\frac{2}{3}$
B
$\frac{1}{6}$
C
$\frac{1}{3}$
D
$\frac{1}{4}$
4
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\int \frac{d x}{\sqrt[3]{\sin ^{11} x \cos x}}=-\left(\frac{3}{8} f(x)+\frac{3}{2} g(x)\right)+c$ then

A
$\mathrm{f}(x)=\tan ^{\frac{-8}{3}} x, \mathrm{~g}(x)=\tan ^{\frac{-2}{3}} x$, (where c is a constant of integration)
B
$\mathrm{f}(x)=\tan ^{\frac{8}{3}} x, \mathrm{~g}(x)=\tan ^{\frac{-2}{3}} x$, (where c is a constant of integration)
C
$\mathrm{f}(x)=\tan ^{\frac{-8}{3}} x, \mathrm{~g}(x)=\tan ^{\frac{2}{3}} x$, (where c is a constant of integration)
D
$\mathrm{f}(x)=\tan ^{\frac{8}{3}} x, \mathrm{~g}(x)=\tan ^{\frac{2}{3}} x$, (where c is a constant of integration)
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12