1
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$\int \frac{x^4+x^2+1}{x^2-x+1} d x$ is equal to

A
$\frac{x^3}{3}-\frac{x^2}{2}+x+\mathrm{c}$, (where c is a constant of integration)
B
$\frac{x^3}{3}+\frac{x^2}{2}+x+\mathrm{c}$, (where c is a constant of integration)
C
$\frac{x^3}{3}-\frac{x^2}{2}-x+\mathrm{c}$, (where c is a constant of integration)
D
$\frac{x^3}{3}+\frac{x^2}{2}-x+\mathrm{c}$, ( where c is a constant of integration)
2
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the curves $y^2=6 x, 9 x^2+\mathrm{b} y^2=16$ intersect each other at right angles, then the value of $b$ is

A
$\frac{9}{2}$
B
6
C
7
D
$\frac{7}{2}$
3
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}$ and $\overline{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}$ If $\bar{c}$ is a vector such that $\bar{a} \cdot \bar{c}=|\bar{c}|$, $|\overline{\mathrm{c}}-\overline{\mathrm{a}}|=2 \sqrt{2}$ and the angle between $(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$ and $\bar{c}$ is $60^{\circ}$, then the value of $|(\bar{a} \times \bar{b}) \times \bar{c}|$ is

A
$\frac{\sqrt{3}}{2}$
B
$\frac{3 \sqrt{3}}{2}$
C
$\frac{5 \sqrt{3}}{2}$
D
$\frac{\sqrt{3}}{4}$
4
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The mean and the standard deviation of 10 observations are 20 and 2 respectively. Each of these 10 observations is multiplied by p and then reduced by $q$, where $p \neq 0$ and $q \neq 0$. If the new mean and new standard deviation (s.d.) become half of the original values, then $q$ is equal to

A
$-20$
B
$-5$
C
$10$
D
$-10$
MHT CET Papers
EXAM MAP