1
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the mean and the variance of Binomial variate $X$ are 2 and 1 respectively, then the probability that X takes a value greater than or equal to one is

A
$\frac{1}{16}$
B
$\frac{9}{16}$
C
$\frac{3}{4}$
D
$\frac{15}{16}$
2
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $I=\int \frac{(x-1) \mathrm{e}^x}{(x+1)^3} \mathrm{dx}$ is

A
$\frac{-\mathrm{e}^x}{(x+1)^2}+C$, (where $C$ is a constant of integration)
B
$\frac{-x \mathrm{e}^x}{(x+1)^2}+\mathrm{C}$, (where C is a constant of integration)
C
$\frac{x \mathrm{e}^x}{(x+1)^2}+C$, (where C is a constant of integration)
D
$\frac{\mathrm{e}^x}{(x+1)^2}+\mathrm{C}$, (where C is a constant of integration)
3
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $Z=\frac{-2}{1+\sqrt{3} i}, i=\sqrt{-1}$, then the value of $\arg Z$ is

A
$\frac{2 \pi}{3}$
B
$\frac{\pi}{3}$
C
$-\frac{\pi}{3}$
D
$\frac{4 \pi}{3}$
4
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

In $(0,2 \pi)$, the number of solutions of $\tan \theta+\sec \theta=2 \cos \theta$ are

A
0
B
1
C
2
D
3
MHT CET Papers
EXAM MAP