1
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the circle, the end points of whose diameter are the centres of the circles $x^2+y^2+6 x-14 y+5=0$ and $x^2+y^2-4 x+10 y-4=0$ is

A
$x^2+y^2-x-2 y+41=0$
B
$x^2+y^2+x-2 y-41=0$
C
$x^2+y^2+x-2 y-41=0$
D
$x^2+y^2-x+2 y-41=0$
2
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the plane, passing through the point $(1,1,1)$ and perpendicular to the planes $2 x+y-2 z=5$ and $3 x-6 y-2 z=7$, is

A
$14 x+2 y-15 z=1$
B
$14 x-2 y+15 z=27$
C
$14 x+2 y+15 z=31$
D
$-14 x+2 y+15 z=3$
3
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If for $x \in\left(0, \frac{1}{4}\right)$, the derivative of $\tan ^{-1}\left(\frac{6 x \sqrt{x}}{1-9 x^3}\right)$ is $\sqrt{x} \cdot g(x)$, then $g(x)$ equals

A
$\frac{3 x \sqrt{x}}{1-9 x^3}$
B
$\frac{3 x}{1-9 x^3}$
C
$\frac{3}{1+9 x^3}$
D
$\frac{9}{1+9 x^3}$
4
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the vectors $a \hat{i}+\hat{j}+\hat{k}, \hat{i}+b \hat{j}+\hat{k}, \hat{i}+\hat{j}+c \hat{k}$ $(a \neq b, c \neq 1)$ are coplanar, then $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$ has the value __________.

A
1
B
$-$1
C
$-$2
D
5
MHT CET Papers
EXAM MAP