1
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the circle, the end points of whose diameter are the centres of the circles $x^2+y^2+6 x-14 y+5=0$ and $x^2+y^2-4 x+10 y-4=0$ is

A
$x^2+y^2-x-2 y+41=0$
B
$x^2+y^2+x-2 y-41=0$
C
$x^2+y^2+x-2 y-41=0$
D
$x^2+y^2-x+2 y-41=0$
2
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the plane, passing through the point $(1,1,1)$ and perpendicular to the planes $2 x+y-2 z=5$ and $3 x-6 y-2 z=7$, is

A
$14 x+2 y-15 z=1$
B
$14 x-2 y+15 z=27$
C
$14 x+2 y+15 z=31$
D
$-14 x+2 y+15 z=3$
3
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If for $x \in\left(0, \frac{1}{4}\right)$, the derivative of $\tan ^{-1}\left(\frac{6 x \sqrt{x}}{1-9 x^3}\right)$ is $\sqrt{x} \cdot g(x)$, then $g(x)$ equals

A
$\frac{3 x \sqrt{x}}{1-9 x^3}$
B
$\frac{3 x}{1-9 x^3}$
C
$\frac{3}{1+9 x^3}$
D
$\frac{9}{1+9 x^3}$
4
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the vectors $a \hat{i}+\hat{j}+\hat{k}, \hat{i}+b \hat{j}+\hat{k}, \hat{i}+\hat{j}+c \hat{k}$ $(a \neq b, c \neq 1)$ are coplanar, then $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$ has the value __________.

A
1
B
$-$1
C
$-$2
D
5
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12