If the curves $y^2=6 x, 9 x^2+\mathrm{b} y^2=16$ intersect each other at right angles, then the value of $b$ is
Let $\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}$ and $\overline{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}$ If $\bar{c}$ is a vector such that $\bar{a} \cdot \bar{c}=|\bar{c}|$, $|\overline{\mathrm{c}}-\overline{\mathrm{a}}|=2 \sqrt{2}$ and the angle between $(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$ and $\bar{c}$ is $60^{\circ}$, then the value of $|(\bar{a} \times \bar{b}) \times \bar{c}|$ is
The mean and the standard deviation of 10 observations are 20 and 2 respectively. Each of these 10 observations is multiplied by p and then reduced by $q$, where $p \neq 0$ and $q \neq 0$. If the new mean and new standard deviation (s.d.) become half of the original values, then $q$ is equal to
If Mean value theorem holds for the function $\mathrm{f}(x)=(x-1)(x-2)(x-3), x \in[0,4]$ then the values of $c$ as per the theorem are