1
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation of family of circles, whose centres are on the X -axis and also touch the Y -axis is

A
$4\left(x+y \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2 x^2=\left(x^2+y^2\right)^2$
B
$\left(x+y \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2 x^2=\left(x^2+y^2\right)^2$
C
$2\left(x+y \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2 x^2=\left(x^2+y^2\right)^2$
D
$\left(x+y \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2 x^2=4\left(x^2+y^2\right)^2$
2
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

A ball ' $A$ ' is projected vertically upwards with certain initial speed. Another ball 'B' of same mass is projected at an angle of $30^{\circ}$ with vertical with the same initial speed. At the highest point, the ratio of potential energy of ball A to that of ball B will be

$$\left(\sin 90^{\circ}=1, \sin 60^{\circ}=\cos 30^{\circ}=\frac{\sqrt{3}}{2}, \sin 30^{\circ}=\cos 60^{\circ}=\frac{1}{2}\right)$$

A
$4: 3$
B
$3: 4$
C
$4: 1$
D
$3: 2$
3
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

A small sphere oscillates simple harmonically in a watch glass whose radius of curvature is 1.6 m . The period of oscillation of the sphere in second is (acceleration due to gravity, $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2$ )

A
$0.8 \pi$
B
$0.6 \pi$
C
$0.4 \pi$
D
$0 \cdot 2 \pi$
4
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The path difference between two waves $\mathrm{Y}_1=\mathrm{a}_1 \sin \left(\omega \mathrm{t}-\frac{2 \pi \mathrm{x}}{\lambda}\right)$ and $\mathrm{Y}_2=\mathrm{a}_2 \cos \left(\omega \mathrm{t}-\frac{2 \pi \mathrm{x}}{\lambda}+\phi\right)$ is

A
$\frac{\lambda \phi}{2 \pi}$
B
$\frac{\lambda}{2 \pi}\left(\phi+\frac{\pi}{2}\right)$
C
$\frac{2 \pi}{\lambda}\left(\phi-\frac{\pi}{2}\right)$
D
$\frac{2 \pi}{\lambda} \phi$
MHT CET Papers
EXAM MAP