1
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{A} \equiv(1,-1,0), \mathrm{B} \equiv(0,1,-1)$ and $\mathrm{C} \equiv(-1,0,1)$, then the unit vector $\overline{\mathrm{d}}$ such that $\overline{\mathrm{a}}$ and $\overline{\mathrm{d}}$ are perpendiculars and $\overline{\mathrm{b}}, \overline{\mathrm{c}}, \overline{\mathrm{d}}$ are coplanar is

A
$+\frac{1}{\sqrt{3}}(1,1,1)$
B
$+\frac{1}{\sqrt{3}}(-1,-1,1)$
C
$+\frac{1}{\sqrt{6}}(1,1,-2)$
D
$+\frac{1}{\sqrt{2}}(1,1,0)$
2
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A bullet is shot horizontally and its distance S cm at time t second is given by $\mathrm{S}=1200 \mathrm{t}-15 \mathrm{t}^2$, then the distance covered by the bullet when it comes to the rest, is

A
12000 cm
B
24000 cm
C
1200 cm
D
2400 cm
3
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $|z|=1$ and $w=\frac{z-1}{z+1}$ (where $\left.z \neq-1\right)$, then $\operatorname{Re}(w)$ is

A
0
B
$-\frac{1}{|z+1|^2}$
C
$\left|\frac{z}{z+1}\right| \cdot \frac{1}{|z+1|^2}$
D
$\frac{\sqrt{2}}{|z+1|^2}$
4
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $g(x)=x^2+x-1$ and (gof) $(x)=4 x^2-10 x+5$, then $\mathrm{f}(2)$ is equal to

A
1
B
$-$1
C
2
D
$-$2
MHT CET Papers
EXAM MAP