In an interference experiment, the $\mathrm{n}^{\text {th }}$ bright fringe for light of wavelength $\lambda_1(\mathrm{n}=0,1,2,3 \ldots)$ coincides with the $\mathrm{m}^{\text {th }}$ dark fringe for light of wavelength $\lambda_2(\mathrm{~m}=1,2,3 \ldots)$. The ratio $\frac{\lambda_1}{\lambda_2}$ is
Three inductances are connected as shown in figure. The equivalent inductance is
There are two samples A and B of a certain gas, which are initially at the same temperature and pressure. Both are compressed from volume v to $\frac{\mathrm{v}}{2}$. Sample A is compressed isothermally while sample B is compressed adiabatically. The final pressure of $A$ is
A single slit diffraction pattern is formed with light of wavelength $6195 \mathop A\limits^o$. The second secondary maximum for this wavelength coincides with the third secondary maximum in the pattern for light of wavelength ' $\lambda_0$ '. The value of ' $\lambda_0$ ' is