The distance of the two planets A and B from the sun are $r_A$ and $r_B$ respectively. Also $r_B$ is equal to $100 r_A$. If the orbital speed of the planet $A$ is ' $v$ ' then the orbital speed of the planet B is
A tube of uniform bore of cross-sectional area ' $A$ ' has been set up vertically with open end facing up. Now ' $M$ ' gram of a liquid of density ' $d$ ' is poured into it. The column of liquid in this tube will oscillate with a period ' T ', which is equal to [ $g=$ acceleration due to gravity]
An n-p-n transistor can be considered to be equivalent to two diodes connected. The correct figure out of the following is
The fundamental frequency of an air column in a pipe open at both ends is ' $\mathrm{f}_1$ '. Now $80 \%$ of its length is immersed in water, the fundamental frequency of the air column becomes $f_2$. The ratio of $f_1: f_2$ is