1
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let the vectors $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ be such that $|\overline{\mathrm{a}}|=2,|\overline{\mathrm{~b}}|=4$ and $|\bar{c}|=4$. If the projection of $\bar{b}$ on $\bar{a}$ is equal to the projection of $\overline{\mathrm{c}}$ on $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ is perpendicular to $\overline{\mathrm{c}}$, then the value of $|\overline{\mathrm{a}}+\overline{\mathrm{b}}-\overline{\mathrm{c}}|$ is equal to

A
$2\sqrt5$
B
6
C
4
D
$4\sqrt2$
2
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A person throws an unbiased die. If the number shown is even, he gains an amount equal to the number shown. If the number is odd, he loses an amount equal to the number shown. Then his expectation is ₹.

A
1
B
1.5
C
2
D
0.5
3
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}$ and $\overline{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}$. If $\overline{\mathrm{c}}$ is a vector such that $\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=|\overline{\mathrm{c}}|,|\overline{\mathrm{c}}-\overline{\mathrm{a}}|=2 \sqrt{2}$ and the angle between $(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$ and $\overline{\mathrm{c}}$ is $30^{\circ}$, then the value of $|(\bar{a} \times \bar{b}) \times \bar{c}|$ is equal to

A
$\frac{\sqrt{3}}{2}$
B
$\frac{3}{2}$
C
$\frac{1}{\sqrt{2}}$
D
$\frac{\sqrt{3}}{4}$
4
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\theta$ and $\alpha$ are not odd multiples of $\frac{\pi}{2}$ then $\tan \theta=\tan \alpha$ implies principal solution is

A
$\theta=\alpha+\frac{\mathrm{n} \pi}{2}, \mathrm{n} \in \mathbb{Z}$
B
$\quad \theta=\alpha+\frac{3 \mathrm{n} \pi}{2}, \mathrm{n} \in \mathbb{Z}$
C
$\theta=\mathrm{n} \pi+\alpha, \mathrm{n} \in \mathbb{Z}$
D
$\quad \theta=\frac{\mathrm{n} \pi}{4}+\alpha, \mathrm{n} \in \mathbb{Z}$
MHT CET Papers
EXAM MAP